

SCIENCE & MISSION SYSTEMS

Orbital Express

March 29, 2007

Jimmy Lee / VP33

Orbital Express Background

- Orbital Express (OE) is a DARPA managed mission to demonstrate minimal capabilities for on-orbit servicing and resupply of some consumables.
 - NASA ESMD has invested approximately \$40M in Orbital Express
- DARPA Orbital Express Objectives
 - Demonstrate the technical feasibility and utility of Autonomous On-Orbit Satellite Servicing
 - Develop Non-Proprietary Satellite Interfaces
 - Three month to one year mission with multiple demonstrations
- MSFC Orbital Express Mission Objective
 - Demonstrate use of AVGS technology for Automated Rendezvous and Docking (AR&D)
- Launched on March 8, 2007

On-Orbit Servicing

Orbital Express

Orbital Express Benefits to NASA

- Benefits to AR&D
 - First orbital demonstration of an integrated AR&D sensor suite, including the NASA AVGS and Boeing sensors, for proximity operations and docking
- Other benefits to future NASA needs
 - Demonstration of Robotic Fluid Coupler
 - Use of Robotic arm to replace ORUs
 - Limited refueling and/or Servicing of Future Vehicles and Facilities

MSFC Orbital Express Tasks

- MSFC task agreements were defined such that deliverables and support were provided to Boeing as the primary customer
 - Boeing is the DAPRA OE Prime Integrator and responsible for development of ASTRO chase vehicle which contains the AVGS
- MSFC was responsible for deliverables and support for the Orbital Express Program as follows
 - AVGS Optical System
 - AVGS Flight Software
 - AVGS Optical Characterization and Performance Testing
 - AVGS Emulator Development and Support
 - OE Docking Mechanism Qualification Testing
 - Automated Rendezvous and Capture Sensor
 Suite (ARCSS) Open Loop System Level Testing
 - Orbital Express Mission Support

Orbital Express

AVGS Flight Unit

MSFC S&MS / ED Organizations

BASIS OF VIDEO GUIDANCE SENSOR OPERATION

MSFC Orbital Express Task Status

- Completed all MSFC deliverables and pre-launch support tasks
- MSFC stepped up during the project to average provide essential support to resolve engineering issues with AVGS Flight hardware as delivered by OSC to Boeing
- MSFC efforts resulted in successful delivery of AVGS to Boeing for Spacecraft Integration
- MSFC participated in Pre-Mission
 Dress Rehearsals and is supporting
 Mission Operations

OE ARCSS EDU Testing at FRL

AVGS FOV Coverage

Orbital Express AVGS Mission Objectives

- Conduct multiple rendezvous and docking mission events to obtain adequate assessment of AVGS performance
 - Current plan is a single AVGS event as primary AR&D sensor plus six "blended mode" events using Boeing sensor plus AVGS
- Perform quick-look analysis of AVGS performance during mission and provide operations inputs to Boeing if needed
- Perform detailed post-mission analysis of AVGS performance and use for NGAVGS development

NASA AR&D Risks

SCIENCE & MISSION SYSTEMS

- AR&D is identified as one of the top CEV Risks
 - The risk is primarily in sensor readiness to meet first flight of CEV to ISS
- COTS requires
 AR&C for all uncrewed operations
- Future Constellation missions may require multiple launches and LEO assembly

NASA OE Team is supporting JSC CEV RPOD

Where is AR&D Today?

- The U.S. does not have an AR&D system capability and is reliant on manned control for rendezvous and docking of orbiting spacecraft
- Existing Russian AR&D sensor hardware is not appropriate to use or adapt
- Gaps Exist in Current US AR&D System Development
 - No satisfactory far field sensor exists
 - No satisfactory androgynous, redundant docking mechanism exists
 - No proximity operations and docking sensor exists at the required TRL
 - Autonomous flight manager software is needed

Shuttle / ISS Docking Port

Soyuz with KURS

AR&D Development Needs

- AR&D is a key long lead enabling system
 - CEV cargo missions to ISS*
 - Commercial cargo re-supply to ISS*
 - Lunar transfer assembly
 - Mars Sample Return
 - DOD on-orbit servicing
- An integrated program is needed to develop and demonstrate AR&D

MSFC is Strategically Positioned to Support AR&D

- MSFC Rendezvous and Docking Sensor technology has a high level of maturity
 - VGS flight tested on STS 87 and STS 95
 - AVGS flight tested on DART and OE flight test underway
 - NGAVGS to address parts obscelescence and radiation hardening
- MSFC has the appropriate skill mix to support AR&D Development for CEV
- MSFC has unique, "world class", AR&D test facilities

Flight Robotics Lab

STS 95 Spartan Deployment

CEV AR&D Sensor Testing

Orbital Express Launch and Activation

- STP-1 Launched on 3/8/2007 at 10:10 EDT
 - Orbital Express is primary payload
 - Three secondary satellites deployed from ESPA (EELV Secondary Payload Adapter) ring
 - MidSTAR 1 (US Naval Academy)
 - FalconSat 3 (US Air Force Academy)
 - STPSat 1 (Space Test Program)
- OE separated from the Atlas V at 10:28 pm EST into a 492-km circular orbit with a 46.0 degree inclination
- Following separation, the solar arrays were deployed and a heartbeat detected
- OE activation and checkout continues
- Operations replan took place after initial issues were worked
- Unmated operations scheduled to begin on 4/16
 - ARCSS sensor checkout, including AVGS
 - MSFC to support unmated operations at the Engineering Support Room, Boeing, Huntington Beach

